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1.            z = 5 – 3i,     w = 2 + 2i 

 

 Express in the form a + bi, where a and b are real constants, 

 

(a) z
2
, 

(2) 

(b)  
w

z
. 

(3) 

 

 

2.           A = 








35

02
,    B = 







 

25

13
 

 

(a)  Find AB. 

(3) 

 

Given that 

C = 








10

01
 

 

(b) describe fully the geometrical transformation represented by C, 

(2) 

(c) write down C
100

. 

(1) 
 

 

3.       f(x) = 5x
2
 – 2

3

4x  – 6,    x  0. 

 

 The root  of the equation f (x) = 0 lies in the interval [1.6,1.8]. 

 

(a)  Use linear interpolation once on the interval [1.6, 1.8] to find an approximation to . 

 Give your answer to 3 decimal places. 

(4) 

(b)  Differentiate f(x) to find f ′(x). 

(2) 

(c)  Taking 1.7 as a first approximation to , apply the Newton-Raphson process once to f(x) 

to obtain a second approximation to . Give your answer to 3 decimal places. 

(4) 
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4.  Given that 2 – 4i is a root of the equation 

 

z
2
 + pz + q = 0, 

 

where p and q are real constants, 

 

(a)  write down the other root of the equation, 

(1) 

(b)  find the value of p and the value of q. 

(3) 
 

 

5.  (a)  Use the results for 


n

r

r
1

,  


n

r

r
1

2  and  


n

r

r
1

3 , to prove that 

 





n

r

rrr
1

)5)(1(  = 
4

1
n(n + 1)(n + 2)(n + 7) 

 

 for all positive integers n. 

(5) 

(b)  Hence, or otherwise, find the value of 

 





50

20

)5)(1(
r

rrr . 

 (2) 
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6.  

 
 

Figure 1 

 

Figure 1 shows a sketch of the parabola C with equation y
2
 = 36x. 

The point S is the focus of C. 

 

(a)  Find the coordinates of S. 

(1) 

(b)  Write down the equation of the directrix of C. 

(1) 

 

Figure 1 shows the point P which lies on C, where y > 0, and the point Q which lies on the 

directrix of C. The line segment QP is parallel to the x-axis. 

 

Given that the distance PS is 25, 

 

(c)  write down the distance QP, 

(1) 

(d)  find the coordinates of P, 

(3) 

(e)  find the area of the trapezium OSPQ. 

(2) 
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7.              z = – 24 – 7i 

 

(a)  Show z on an Argand diagram. 

(1) 

(b)  Calculate arg z, giving your answer in radians to 2 decimal places. 

(2) 

 

It is given that 

w = a + bi,     a  ℝ,   b  ℝ. 

 

Given also that w = 4 and arg w = 
6

5
, 

 

(c)  find the values of a and b, 

(3) 

(d)  find the value of zw. 

(3) 

 

 

8.       A = 












31

22
 

 

(a)  Find det A. 

(1) 

(b)  Find A
–1

. 

(2) 

 

The triangle R is transformed to the triangle S by the matrix A. 

Given that the area of triangle S is 72 square units, 

 

(c)  find the area of triangle R. 

(2) 

 

The triangle S has vertices at the points (0, 4), (8, 16) and (12, 4). 

 

(d)  Find the coordinates of the vertices of R. 

(4) 
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9. A sequence of numbers u1, u2, u3, u4, . . ., is defined by 

 

un + 1 = 4un + 2,    u1 = 2. 

 

Prove by induction that, for n  ℤ+
, 

un = 
3

2
(4

n
 – 1). 

 

(5) 

 

10.  The point P 








t
t

6
,6 ,  t ≠ 0,  lies on the rectangular hyperbola H with equation xy = 36. 

 

(a)  Show that an equation for the tangent to H at P is 

 

y = – x
t 2

1
 + 

t

12
. 

 (5) 

 

The tangent to H at the point A and the tangent to H at the point B meet at the point (−9, 12). 

 

(b)  Find the coordinates of A and B. 

(7) 

 

TOTAL FOR PAPER: 75 MARKS 
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Question 
Number Scheme      Marks 

1. 5 3i , 2 2iz w= − = +   

(a) ( )( )2 5 3i 5 3iz = − −   
   
 225 15i 15i 9i

25 15i 15i 9
= − − +
= − − −

 
An attempt to multiply out the 

brackets to give four terms (or four 
terms implied).

zw is M0 

M1 

   
 16 30i= −  16 30i− A1 
  Answer only 2/2 (2) 
   

(b) ( )
( )
5 3i
2 2i

z
w

−
=

+
 

 

   
 ( )

( )
( )
( )

5 3i 2 2i
2 2i 2 2i
− −

= ×
+ −

 Multiplies z
w

 by ( )
( )
2 2i
2 2i
−
−

M1 

   
 

10 10i 6i 6
4 4

− − −
=

+
 

Simplifies realising that a real 
number is needed on the 

denominator and applies 2i 1= −  on 
their numerator expression and 

denominator expression.

M1 

   
 4 16i

8
−

=  
 

   

 

1 2i
2

= −  1 2i
2
−  or 

2
1

=a  and 2−=b  or 

equivalent
Answer as a single fraction A0

A1 

  (3) 
  [5] 
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Question 
Number Scheme      Marks 

2.   

(a) 
2 0 3 1

,
5 3 5 2

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A B  
 

   

 
2 0 3 1
5 3 5 2

− −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

AB   

   
 

      
2( 3) 0(5) 2( 1) 0(2)
5( 3) 3(5) 5( 1) 3(2)
− + − +⎛ ⎞

= ⎜ ⎟− + − +⎝ ⎠
 

A correct method to multiply out 
two matrices.  Can be implied by 
two out of four correct elements.

M1 

   

Any three elements correct A1  
     

6 2
0 1
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 
Correct answer A1 

  Correct answer only 3/3 (3) 
   

Reflection M1 
      (b) Reflection; about the y-axis. y-axis (or 0x = .) A1 

  (2) 
   

(c) 100 1 0
0 1
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

C I  
1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 or I B1 

  (1) 
  [6] 
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Question 
Number Scheme      Marks 

3. 
3
22f ( ) 5 4 6, 0x x x x= − − .   

f (1.6) 1.29543081...= −    awrt -1.30 B1 (a) 
f (1.8) 0.5401863372...=  awrt 0.54 B1 

   

 
1.6 1.8

"1.29543081..." "0.5401863372..."
α α− −

=  
Correct linear interpolation method 
with signs correct.  Can be implied 

by working below.
M1 

 "1.29543081..."1.6 0.2
"0.5401863372..." "1.29543081..."

α
⎛ ⎞

= + ⎜ ⎟+⎝ ⎠
  

   
 1.741143899...=  awrt 1.741 A1 
  Correct answer seen 4/4 (4) 

At least one of a x±  or 
1
2b x±  

correct.
M1 

(b) 
1
2f ( ) 10 6x x x′ = −  

Correct differentiation. A1 
  (2) 

f (1.7) 0.4161152711...= −    f (1.7) awrt 0.42= − B1 (c) 
f (1.7) 9.176957114...′ =  f (1.7) awrt 9.18′ = B1 

   
 

2
" 0.4161152711..."1.7

"9.176957114..."
α −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
 

Correct application of Newton-
Raphson formula using their 

values. 
M1 

   
 1.745343491...=   
   
 1.745 (3dp)=  1.745 A1 cao 
  Correct answer seen 4/4 (4) 
  [10] 
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Question 
Number Scheme      Marks 

4. 2
10, 2 4iz p z q z+ + = = −   

(a) 2 2 4iz = +  2 4i+ B1 
  (1) 
   

(b) ( 2 4i)( 2 4i) = 0z z− + − −   
 2 2 4i 2 4 8i 4i 8i 16 0z z z z z⇒ − − − + − + − + =  An attempt to multiply out brackets 

of two complex factors and no i2. M1 

Any one of 4, 20.p q= − =  A1  
2 4 20 0z z⇒ − + =  

Both 4, 20.p q= − =  A1 
  2 4 20 0z z⇒ − + =  only 3/3 (3) 

  
 

[4] 
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Question 
Number Scheme      Marks 

5 
1

( 1)( 5)
n

r

r r r
=

+ +∑    
 

Multiplying out brackets and an 
attempt to use at least one of the 

standard formulae correctly.
M1 

 
(a) 3 2

1

2 2

6 5

1 1 1( 1) 6. ( 1)(2 1) 5. ( 1)
4 6 2

n

r
r r r

n n n n n n n

=

= + +

= + + + + + +

∑
 

Correct expression. A1 

   
 2 21 5( 1) ( 1)(2 1) ( 1)

4 2
n n n n n n n= + + + + + +  

 

   

Factorising out at least ( 1)n n + dM1 
 ( )1 ( 1) ( 1) 4(2 1) 10

4
n n n n n= + + + + +  

 

   

 ( )21 ( 1) 8 4 10
4

n n n n n= + + + + +   

   

 ( )21 ( 1) 9 14
4

n n n n= + + +  Correct 3 term quadratic factor A1 

   

 
1 ( 1)( 2)( 7)
4

n n n n= + + + * Correct proof.  No errors seen. A1 

  (5) 
   

(b) 
50

20
( 1)( 5)n

r
S r r r

=

= + +∑   

   
 50 19S S= −   
   
 1 1

4 4(50)(51)(52)(57) (19)(20)(21)(26)= −  Use of 50 19S S−  M1 
   
 1889550 51870= −   
   
 1837680=  1837680 A1 
  Correct answer only 2/2  
  (2) 
  [7] 
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Question 
Number Scheme      Marks 

6. 2 36
4: 36 9C y x a= ⇒ = =     

   
(a) (9, 0)S  (9, 0) B1 

  (1) 
   

(b) 9 0 or 9x x+ = = −  9 0 or 9x x+ = = −  
or ft using their a from part (a). B1  

  (1) 
   

(c) 25 25PS QP= ⇒ =  
Either 25 by itself or 25PQ = .
Do not award if just 25PS =  is 

seen.  
B1 

  (1) 
   

(d) x-coordinate of P 25 9 16x⇒ = − =  16x = B1  
   

 2 36(16)y =  Substitutes their x-coordinate into 
equation of C. M1 

   

 576 24y = =  24y = A1 

  (3) 
 Therefore (16, 24)P   
   

(e) Area OSPQ 1
2 (9 25)24= +  ( )( )1

2 their 25 theira y+ M1 

  or rectangle and 2 distinct triangles, 
correct for their values.  

 2408 (units)=  408 A1 
  (2) 
  [8] 
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Question 
Number Scheme      Marks 

 
7.      (a) 

 
 
 
 
 
 
 
 
 
 
 
 
   

Correct quadrant with ( 24, 7)− −  
indicated.

B1 

  (1) 
   

(b) ( )1 7
24arg tanz π −= − +  ( )1 7

24tan−  or ( )1 24
7tan− M1 

   
 2.857798544... 2.86 (2 dp)= − = −  awrt -2.86 or awrt 3.43 A1 
  (2) 
   

(c) 5 5
6 64 ,arg 4 ,w w rπ πθ= = ⇒ = =   

   
 cos i sinw r rθ θ= +   
   

Attempt to apply cos i sin .r rθ θ+  M1  ( ) ( )5 5
6 64cos 4i sinw π π= +  

Correct expression for w. A1 
 ( ) ( )3 1

2 24 4i−= +   

 2 3 2i= − +  either 2 3 2i− +  or awrt 3.5 2i− +  A1 
  (3) 
 2 3 , 2a b= − =   
   

(d) 2 2( 24) ( 7) 25z = − + − =  
25z =  or 

)48314()14348( −++=zw i or 
awrt 97.1-23.8i

B1 

   

 (25)(4)zw z w= × =  Applies z w×  or zw  M1 

   
 100=  100 A1 
  (3) 
 

 
[9] 

 

Re 

-7 

-24   

 

Im 
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Question 
Number Scheme      Marks 

8. 
2 2
1 3

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

A    
 

(a) det 2(3) ( 1)( 2) 6 2 4= − − − = − =A  4 B1 
  (1) 
   

3 21
1 2det
⎛ ⎞
⎜ ⎟
⎝ ⎠A

M1 

(b) 1 3 21
1 24

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A  

3 21
1 24
⎛ ⎞
⎜ ⎟
⎝ ⎠

A1 

  (2) 
   

72
their det A

 or ( )72 their det A  M1 
(c) 272Area( ) 18 (units)

4
R = =  

18 or ft answer. A1  
  (2) 
   

(d) 1 1 1− − −= ⇒ = ⇒ =AR S A AR A S R A S     

   

 
3 2 0 8 121
1 2 4 16 44
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

R  At least one attempt to apply 1−A by 
any of the three vertices in .S  M1 

   
 8 56 441

8 40 204
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 
 

   
 2 14 11

2 10 5
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 
At least one correct column o.e. A1  

  At least two correct columns o.e. A1 
 
 

 
Vertices are (2, 2), (14, 10) and (11, 5).  

All three coordinates correct. A1 
  (4) 
  [9] 
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Question 
Number Scheme      Marks 

9. 1 14 2 , 2n nu u u+ = + =   and  2
3 (4 1)n

nu = −   
   
 12 2

1 3 31; (4 1) (3) 2n u= = − = =  
So nu is true when 1.n =  

Check that 2
3 (4 1)n

nu = −  

yields 2 when 1.n =  
B1 

   
 Assume that for n k= that, 2

3 (4 1)k
ku = −  is true 

for .k +∈Z  

 

   
 

1Then 4 2k ku u+ = +   
   

 ( )2
34 (4 1) 2k= − +  

Substituting 2
3 (4 1)k

ku = −  into 

1 4 2.n nu u+ = +  
M1 

   
 ( )8 8

3 34 2k= − +  An attempt to multiply out the 
brackets by 4 or 8

3
M1 

   
 ( )( )2 2

3 34 4 k= −   

   
 12 2

3 34k+= −   

   
 12

3 (4 1)k+= −  12
3 (4 1)k+ − A1 

   
 Therefore, the general statement, 2

3 (4 1)n
nu = −  is 

true when 1.n k= +   (As nu  is true for 1,n = ) 
then nu  is true for all positive integers by 
mathematical induction 

Require ‘True when n=1’, ‘Assume 
true when n=k’ and  ‘True when 

1n k= + ’ then true for all n o.e.
A1 

  (5) 
  [5] 
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Question 
Number Scheme      Marks 

10. ( )636 at 6 , .txy t=     

(a) 1 2
2

36 d 3636 36
d
yy x x

x x x
− −= = ⇒ = − = −  

An attempt at d .
d
y
x

 

or d
d
y
t

 and d
d
x
t

 
M1 

 ( )6
2

d 36At 6 , ,
d (6 )t
yt
x t
= −  An attempt at d .

d
y
x

 in terms of t M1 

 

2

d 1So,
dT
ym
x t

= = −  2

d 1
d
y
x t
= − *

Must see working to award here
A1 

 T:  ( )2

6 1 6y x t
t t

− = − −  Applies ( )6 their 6Ty m x t
t

− = − M1 

 T:  2

6 1 6y x
t t t

− = − +  
 

 T:  2

1 6 6y x
t t t

= − + +  
 

 T:  2

1 12y x
t t

= − + * Correct solution . A1  cso 

  (5)  

(b) Both T meet at ( )9, 12−  gives  

 2

1 1212 ( 9)
t t

= − − +  Substituting (-9,12) into T. M1 

 ( )2
2

9 1212 t
t t

= + ×   

 212 9 12t t= +   

 212 12 9 0t t− − =  An attempt to form a “3 term 
quadratic” M1 

 24 4 3 0t t− − =   

   
 (2 3)(2 1) 0t t− + =  An attempt to factorise. M1 
   
  3 1

2 2,t = −  3 1
2 2,t = − A1   

   
An attempt to substitute either their 

3
2t =  or their 1

2t = −  into x and y. M1 

At least one of 
( )9, 4 or ( )3, 12 .− − A1 

 ( ) ( ) ( )

( )

( ) ( )

3 3
2 2 3

2

1 1
2 2

1
2

66 9 , 4 9, 4

6 3 ,
6                    12 3, 12

t x y

t x

y

= ⇒ = = = = ⇒

= − ⇒ = − = −

= = − ⇒ − −
−

 

Both ( )9, 4 and ( )3, 12 .− −  A1 

  (7) 
  [12] 
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Other Possible Solutions 
 
Question 
Number Scheme      Marks 

4. 2
10, 2 4iz p z q z+ + = = −    

    
(a) (i) 2 2 4iz = +  2 4i+ B1 
Aliter   
(ii)  
Way 2 

Product of roots (2 4i)(2 4i)= − +  No i2. Attempt Sum and Product 
of roots or Sum and discriminant M1 

   
 = 4 + 16 = 20   
 or 8(42 =− acb i)2  

 Sum of roots (2 4i) + (2 4i) = 4= − +   
   

Any one of 4, 20.p q= − =  A1  
2 4 20 0z z= − + =  

Both 4, 20.p q= − =  A1 
  (4) 
   
4. 2

10, 2 4iz p z q z+ + = = −   

   
(a) (i) 2 2 4iz = +  2 4i+ B1 
Aliter   
(ii)  
Way 3 2(2 4i) (2 4i) 0p q− + − + =  

An attempt to substitute either 
1z  or 2z  into 2 0z p z q+ + =  

and no i2.
M1 

 12 16i (2 4i) 0p q− − + − + =   
   
 Imaginary part:  16 4 0p− − =   
   
 Real part:  12 2 0p q− + + =   
   
 4 16 4p p= − ⇒ = −  Any one of 4, 20.p q= − =  A1 
 12 2 12 2( 4) 20q p q= − ⇒ = − − =  Both 4, 20.p q= − =  A1 
  (4) 
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Question 
Number Scheme      Marks 

Aliter   
7. (c) 5

64 ,arg and iw w w a bπ= = = +   

Way 2   
Attempts to write down an equation 

in terms of a  and b for either the 
modulus or the argument of w.

M1 
 

2 24 16w a b= ⇒ + =  
 

( )5 5 1
6 6 3

arg arctan b b
a aw π π= ⇒ = ⇒ = − Either 2 2 16a b+ =  or 1

3
b
a = − A1 

   

 2 23 3a b a b= − ⇒ =   
   
 So,   2 2 23 16 4b b b+ = ⇒ =   
   
 2 and 2 3b a⇒ = ± = ∓   
   
 As w is in the second quadrant   
   

 2 3 2iw = − +  either 2 3 2i− +  or awrt 3.5 2i− +  A1 
  (3) 

 2 3 , 2a b= − =   
   

 


